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Which one (if any!) 

will lead to an actual 

quantum computer? 

This talk: try to combine 

aspects of all of these models 

to devise a new architecture for 

quantum computing



A review of the zoo

Adiabatic
Holonomic

Topological

Measurement-based

Circuit model

Adiabatic evolution offers robustness to timing and control 
errors that exist in the circuit model

Errors are suppressed by the spectral gap 

It is unknown if it is fault tolerant (without additional assumptions) and 
lack of modularity makes it difficult to analyze theoretically
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Holonomic QC is also robust to timing errors, and 
some (fewer) types of control errors

Can be made fault tolerant   Oreshkov Brun Lidar, PRL 2009

Typically requires simultaneous control of multiple 
parameters to achieve non-trivial geometric phases
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Topological quantum phases are 
insensitive to local perturbations  
Bravyi Hastings Michalakis 2010 

Naturally long-lived quantum 
memory

Sensitive to finite temperature, 
and still requires active error 
correction.  Also, initialization is 
difficult.
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Very minimal requirements: only local measurements, 
which every scheme uses anyway

Simple initial states (relatively speaking) can be used as 
the entangled resources.

There is absolutely nothing disadvantageous about 
measurement-based QC
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Circuit model provides the most natural language for 
programming quantum computers and designing 
quantum algorithms

Direct implementation involves pulsed gates and a huge 
amount of control… very challenging, to say the least.



Adiabatic teleportation

|ψ〉

single 

qubit

|Φ〉

Bell 

pair
A B C

This is a ground state of Hi = −X2X3 − Z2Z3

(could also use the exchange interaction)

Bacon STF, PRL 2009 Related: Oreshkov Brun Lidar, PRL 2009; Oreshkov, PRL 2009
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single 
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T exp
(
−i

∫ T

0
dτH(τ)

)



Adiabatic teleportation

A B C

H(t) = (1− t)Hi + tHf



Adiabatic teleportation

A B C

H(t) = (1− t)Hi + tHf

Notice that the ground space is 

stabilized by XXX and ZZZ for all t.



Adiabatic teleportation

A B C

H(t) = (1− t)Hi + tHf

|ψ〉

Notice that the ground space is 

stabilized by XXX and ZZZ for all t.



Adiabatic teleportation

A B C

|ψ〉

The adiabatic evolution acts like a 

post-selected teleportation!

Notice that the ground space is 

stabilized by XXX and ZZZ for all t.
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A B C

U3H(t)U†
3 = (1− t)U3HiU

†
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U3|ψ〉

Gottesman Chuang 1999



Adiabatic gate teleportation

A B C

Now the adiabatic evolution teleports 

the unitary onto the qubit.

U3H(t)U†
3 = (1− t)U3HiU

†
3 + tHf

U3|ψ〉

Gottesman Chuang 1999
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UbUa|ψ〉

Universality

A B C

Etc...

 but what about two qubit gates?
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Universality

A B C

A’ B’ C’

Two-qubit gates introduce 3-body terms...

to get rid of them, use perturbation gadgets.
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Our perturbation gadgets: Bartlett & Rudolph 2006

D

D’

Z Z coupling

Qubit encoded in subspace |00〉, |11〉
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Universal, 2-body

A B C

A’ B’ C’

Our perturbation gadgets: Bartlett & Rudolph 2006

D

D’

Z Z coupling

Now qubits are encoded locally



Universal, 2-body

Our perturbation gadgets: Bartlett & Rudolph 2006

A B C

A’ B’ C’

D

D’

Ratio of energy scales = λ =

Gate fidelity= 1−Θ
(
λ2

)

Gap = Θ(λ)



1-d architecture
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Adiabatic Code Deformation
Energy

Time

Quantum error-

correcting

codespace

Quantum error-

correcting

codespace

Must be degenerate throughout the entire evolution;

any splittings are errors that need to be coded for and corrected.

Bombin Delgado, J. Phys. A 2009 “Open-loop” holonomy, Kult Aberg Sjoqvist, PRA 2006



Adiabatic holonomic evolution offers robustness to 
timing and control errors that exist in the circuit model

Excitations are suppressed by the constant gap 

“Ground state” errors can be corrected via coding

It is modular, and hence as easy to program as the 
circuit model

Uses only control between subsystems, not levels

Gates are prepared offline, leading to fewer errors

It leads to more results of interest to theorists...

Why is this interesting?



One Way QC

Raussendorf Briegel, PRL 2001 

Create Entangled State

|0〉 Rθ • !"!!!
|0〉 H #$%&'()* !"!!!
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Adaptively measure to enact circuit
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One Way QC

Raussendorf Briegel, PRL 2001 

X X X YX±! Y Y Y Y

X Y Y XY X Y X X

Y

|0〉 Rθ • !"!!!
|0〉 H #$%&'()* !"!!!

Adaptively measure to enact circuit

Z

Z



Cluster State Hamiltonian

Sv = Xv

∏

w adjacent to v

Zw

HC = −∆
∑

v

SvCluster state is ground state of 

X Z

Z

Z

Z

Again, it’s possible to use gadgets to 

make only 2-qubit interactions

Bartlett Rudolph, PRA 2006



1 2 3 ... n-1 n

Adiabatic One-way QC

H = −Zn−1Xn −
n−1∑

j=2

Sj

Sj = Zj−1XjZj+1

Turn on -X fields and turn off cluster state coupling

Suppose we prepare on the first physical qubit|+〉

Bacon Flammia, arXiv:0912.2098
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1 2 3 ... n-1 n

Adiabatic One-way QC

H = −Zn−1Xn −
n−1∑

j=2

Sj

Sj = Zj−1XjZj+1

Turn on -X fields and turn off cluster state coupling

-X -X -X
-X -X -X -X -X

Rotating the X fields in X-Y plane to make it universal

The gap is still constant

Suppose we prepare on the first physical qubit|+〉

U |+〉

Bacon Flammia, arXiv:0912.2098



Classical Transistors

An “identity gate”

Problem: quantum information cannot be cloned
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Bacon Crosswhite Flammia, in preparation
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Quantum Transistors?

1. Many-body system in its ground state

2. Qubits localized on one side of the device

3. Apply a strong 1-qubit external field to device

4. Qubits now localized on other side of device 

with a quantum circuit applied to the qubits
Bacon Crosswhite Flammia, in preparation

|ψ〉 U |ψ〉



1 2 3 ... n-1 n

What if we turn on the fields all at once?

Adiabatic Quantum Transistors



1 2 3 ... n-1 n

-X -X -X -X -X -X -X -X

This is the transverse-field Ising model (with funny BCs)

Adiabatic Quantum Transistors

H(t) = (1− t)HC + tHX

The gap is = Θ(1/n)

In analogy with transistors:

An applied field induces a quantum phase transition 

between an insulating and a “quantum logic” phase.



Quantum Transistor Dictionary

R(θ) = exp(−iθZ/2)



Example

How slowly must we turn on the external field in order 

for the device to successfully quantum compute?



Gap Scaling: 1D Numerics
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Gap Scaling: 2D Numerics
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How slowly must we turn on the external field in order 

for the device to successfully quantum compute?

In 1D with no twists, we have rigorously proven the 

gap is inverse polynomial in the circuit size

In 1D with twists, we have extremely strong evidence 

of polynomial scaling in the circuit size

For the 2D case with twists, we have some evidence 

of polynomial scaling in the size of circuit

We have not yet simulated the case with gadgets.

Gap Scaling Summary



Two types of errors:

• Those that change energy

• Those within the degeneracy

• Includes system-bath couplings

   and Hamiltonian perturbations

Fault-Tolerance

0.2 0.4 0.6 0.8 1.0
s

0.5

1.0

1.5

2.0

Energy
1D untwisted Hamiltonian decouples into 

two 1D Ising chains with a transverse field.

Assume the excitations obey detailed balance and are 

suppressed by a Boltzmann factor.

Adiabatic evolution preserves eigenstates, so excitations can 

be (mathematically) dragged back to the beginning.

Straightforward stabilizer arguments shows that these are 

correctible local and independent Pauli errors



Two types of errors:

• Those that change energy

• Those within the degeneracy

• Includes system-bath couplings

   and Hamiltonian perturbations

Fault-Tolerance

0.2 0.4 0.6 0.8 1.0
s

0.5

1.0

1.5

2.0

Energy
1D untwisted Hamiltonian decouples into 

two 1D Ising chains with a transverse field.

Quantum info is susceptible to decoherence near the 

beginning and end, but in the middle string-like stabilizer 

operators give us topological protection from local errors.

We can reschedule the adiabatic evolution so that we only 

spend a constant amount of time in the bad regime, and 

these errors are local and independent there.



Conclusion

|ψ〉 |Φ〉

A B C
Adiabatic Gate 

Teleportation

|ψ〉 U |ψ〉can be combined 

with cluster states

0.2 0.4 0.6 0.8 1.0
s

0.5

1.0

1.5

2.0

Energy

to build robust 

adiabatic quantum 

logic elements


